Adaptive Finite Element Methods for Conservation Laws Based on a Posteriori Error Estimates

نویسندگان

  • CLAES JOHNSON
  • ANDERS SZEPESSY
چکیده

We prove a posteriori error estimates for a nite element method for systems of strictly hyperbolic conservation laws in one space dimension, and design corresponding adaptive methods. The proof of the a posteriori error estimates is based on a strong stability estimate for an associated dual problem, together with the Galerkin orthogonalityof the nite element method. The strong stability estimate uses the entropy condition for the system in an essential way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimation for the Lax-Wendroff finite difference scheme

In many application domains, the preferred approaches to the numerical solution of hyperbolic partial differential equations such as conservation laws are formulated as finite difference schemes. While finite difference schemes are amenable to physical interpretation, one disadvantage of finite difference formulations is that it is relatively difficult to derive the so-called goal oriented a po...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

A posteriori error estimates for the coupling equations of scalar conservation laws

In this paper we prove a posteriori L2(L2) and L∞(H−1) residual based error estimates for a finite element method for the one-dimensional time dependent coupling equations of two scalar conservation laws. The underlying discretization scheme is Characteristic Galerkin method which is the particular variant of the Streamline diffusion finite element method for δ = 0. Our estimate contains certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995